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The dynamics of chaotic billiards is significantly influenced by coexisting regions of regular motion. Here
we investigate the prevalence of a different fundamental structure, which is formed by marginally unstable
periodic orbits and stands apart from the regular regions. We show that these structures both exist and strongly
influence the dynamics of locally perturbed billiards, which include a large class of widely studied systems. We
demonstrate the impact of these structures in the quantum regime using microwave experiments in annular
billiards.
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I. INTRODUCTION

Chaotic billiards are fundamental paradigms in statistical
physics and nonlinear dynamics. By connecting dynamics
with geometry, billiards serve as models to address numerous
questions ranging from the foundations of the ergodic hy-
pothesis �1,2� and the description of shell effects �3� to the
design of microcavity lasers �4� and microwave resonators
�5,6�, among other applications �6�.

A salient feature of billiard systems is that simple geom-
etries, such as those in Fig. 1, suffice to give rise to a rich
variety of dynamical behavior observed in typical Hamil-
tonian systems. But as previously observed for specific cha-
otic billiards, simple geometries may also lead to the exis-
tence of the so-called “bouncing-ball orbits”: one-parameter
families of periodic orbits exhibiting perpendicular motion
between parallel walls. Theoretical and experimental work
on the Sinai �Fig. 1�c�� and Bunimovich stadium �Fig. 1�d��
billiards have shown that such orbits have a major influence
on transport properties, decay of correlations, and spectral
properties �6–9�. This is so because, contrary to the other
orbits embedded in the chaotic component of the phase
space, bouncing-ball orbits are only marginally unstable �i.e.,
perturbations grow only linearly in time�. In general, margin-
ally unstable periodic orbits �MUPOs� can be regarded as a
source of regular behavior that masks strong chaotic proper-
ties. However, MUPOs are not structurally stable and may be
destroyed by small changes in the parameters of the system.
Therefore, MUPOs are considered to be nongeneric and it
has long been assumed that they could exist only for very
special systems, like billiards with parallel walls.

Contrary to this expectation, in this paper we show that
MUPOs are prevalent in a large class of billiard systems. The
starting point of our analysis is the observation that many of
the most widely studied chaotic billiards consist of local per-
turbations of an integrable billiard. For concrete examples,
consider the chaotic billiards shown in the right part of Fig.
1. All these billiards can be obtained by redefining the dy-
namics in the gray region of the integrable billiards in Figs.
1�a�–1�c�, e.g., by introducing a scatterer. It can be shown
that any orbit �i� lying inside the chaotic component and �ii�
not interacting with the introduced scatterers will be a

MUPO. Although bouncing-ball orbits evidently satisfy these
conditions in the billiards of Figs. 1�d�–1�h�, the existence of
such orbits is far from clear in general. Here we use geomet-
ric and analytical arguments to demonstrate the widespread
occurrence of MUPOs. Specifically, using circularlike bil-
liards as model systems—such as those in Figs. 1�f� and
1�g�—we show that infinitely many families of MUPOs exist
for almost all parameter choices of the system. We discuss
the impact of these structures on the dynamics of chaotic
orbits as well as the experimental observation of MUPOs in
the quantum spectrum of microwave annular billiards.

The local perturbations described above are typical for
billiard systems and differ fundamentally from the global
perturbations considered in smooth Hamiltonian systems. In
the latter, the KAM theory shows that most quasiperiodic
orbits of the integrable system survive the perturbation,
while all periodic orbits with marginal stability disappear.
Quite the opposite happens in the former case: a large set of
quasiperiodic orbits disappears but there are families of pe-
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FIG. 1. Adding local perturbations to integrable billiards, as
those shown in �a�–�c�, one obtains frequently studied chaotic bil-
liards, such as those shown in �d�–�h�. The gray regions of the �a�
rectangular, �b� circular, and �c� elliptical billiards are defined in
such a way that chaotic motion is possible �a�R in �b� is the radius
of the smallest circle that circumscribes all scatterers�. MUPOs are
shown here to exist in billiards such as �d� Sinai �1�, �e� stadium �2�,
�f� annular �10�, �g� mushroom �11�, and �h� elliptical with scatter-
ers �12�.
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riodic orbits with marginal stability that survive the pertur-
bation by “avoiding” interaction with the localized scatterers.
These orbits give rise to families of MUPOs detached from
regular regions, which were previously observed in billiards
with parallel walls �7�, and for specific parameters of the
mushroom billiard �13,14�. Here we consider generic control
parameters of a wide class of systems where we characterize
the MUPOs both theoretically and experimentally.

The paper is organized as follows. In Sec. II we perform a
detailed analysis of the existence of MUPOs in the annular
billiard, a representative example of the class of billiards we
are interested in. In Sec. III we show the existence of an
infinite number of different families of MUPOs in annular
and other circularlike billiards. Our experimental results on
microwave cavities appear in Sec. IV. Finally, our conclu-
sions are summarized in Sec. V.

II. ANNULAR BILLIARD

Annular billiards are defined by two eccentric circles, as
shown in Fig. 2�a�. For a fixed radius R=1 of the external
circle, the control parameters are the radius r and displace-
ment ��1−r of the internal circle, which serves as a scat-

terer. The phase space shown in Fig. 2�b� is obtained by
plotting the position �� �0,2�� of the collision of the par-
ticle with the external circumference and the sine of the
angle �� �−� /2,� /2� with the normal direction right after
the collision. In this system, periodic orbits of period q and
rotation number � that collide only with the external circum-
ference define star polygons of type �q ,��, where the inte-
gers q and � are coprime and ��q /2. A star polygon of type
�5,2� is shown in Fig. 1�b� and star polygons of types �2,1�
and �5,1� are shown in Fig. 2. Each star polygon belongs to
a family of orbits of the same type, which is parameterized
by � and has a fixed collision angle sin��sp�=cos��� /q�.

For this system, the conditions �i� and �ii� for the exis-
tence of MUPOs mentioned in Sec. I translate into crossing
the circle of radius a=r+� without colliding with the scat-
terer. Under these conditions, the orbits are embedded into
the chaotic sea but are only marginally unstable �both eigen-
values of the Jacobian matrix equal 1�. The two orbits shown
in Fig. 2 satisfy these conditions and hence are MUPOs. We
use MUPOs �q ,�� to denote the entire one-parameter family
of orbits corresponding to star polygons �q ,�� that satisfy
conditions �i� and �ii�. Note that these orbits are necessarily
periodic because nonperiodic orbits will either collide with
the scatterer or form a regular region for �sin��� � �a, called
whispering gallery. A collision with the scatterer happens
whenever �10�

�sin��� − � sin�� − ��� � r . �1�

In Fig. 2�b� this condition is satisfied between the dashed
lines. In the following we calculate the geometrical condi-
tions for the existence of MUPOs and we demonstrate that
typically an infinite number of families q ,� satisfy these
conditions.

Consider MUPOs that encircle the scatterer from outside,
such as the pentagon-MUPO �5,1� in Fig. 2. Conditions for
the existence of such outer MUPOs are obtained by noting
that every star polygon �q ,�� draws an inner regular q-sided
polygon, like the pentagon in Fig. 1�b�. The radii �d ,D� of
the inscribed and circumscribed circles of this inner polygon
are given by d=cos��� /q� and D=d /cos�� /q�. It follows
that an orbit of type �q ,�� is an outer MUPO �q ,�� if and
only if

cos��
�

q
� � cos��	� �

cos���/q�
cos��/q�

+ r�1 −
1

cos��/q�� ,

�2�

where cos��	��a=r+�. A similar expression is obtained
for mushroom billiards �13,15�.

Inner MUPOs, such as the diameter-MUPO �2,1� in Fig.
2, exist when

� �
r

cos���1 − ��/q�
+ cos��

�

q
� + sin��

�

q
�tan��

1 − �

q
� .

Mixed inner-outer MUPOs may also exist for �
2. Families
of inner, outer, and mixed MUPOs �5,2� are illustrated in Fig.
3.
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FIG. 2. �Color online� Annular billiard for parameters r=0.35
and �=0.5: �a� configuration space and �b� phase space. MUPOs
correspond to the periodic orbits that cross the circle of radius a
�dotted line in �a�� but that do not hit the scatterer �region between
the dashed lines in �b� in which relation �1� is satisfied�. The sym-
bols � and � indicate, respectively, individual orbits belonging to
MUPOs �2,1� and �5,1�.
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Unlike the regular regions around stable periodic orbits,
MUPOs have zero Lebesgue measure in the phase space. The
relevant measure is therefore the size of the families of MU-
POs, given by the length w of the set of angles � �normal-
ized by 2�� for which an orbit with a given �q ,�� exists. In
Fig. 2, w is proportional to the length of the external arcs of
circumference in �a� and to the horizontal lines in �b�. For
orbits inside the whispering gallery one would have w=1.
For a given family of MUPOs �q ,�� we calculate w as

w = wouter + winner + wmixed � 1, �3�

where wouter=1−q�− /� and winner=q�+ /� with cos����
= �cos��� /q��r� /�. For the MUPOs �q ,�� investigated in
Sec. IV below, wmixed=0. Figure 3 shows the geometrical
representation of the terms in Eq. �3�.

III. INFINITE FAMILIES OF MUPOS

We now determine the number and values of the different
families of MUPOs �q ,��’s that exist in a given annular
billiard �r ,��. For inner and mixed MUPOs, only a finite
number of �q ,��’s exist �16�, which can be obtained by in-
spection. On the other hand, we show next that an infinite
number of outer MUPOs �q ,�� typically accumulate close to
the whispering gallery. Let ��q� denote the integer � for
which � /q−	 is minimal and non-negative. In the limit

q→  ⇒ � ��q�

q −	�→0+, both inequalities �2� are satisfied if

��q�
q

− 	 �
a�

2	1 − r2

1

q2 . �4�

Essentially the same expression is obtained for mushroom
billiards �15� and the same scaling on q is expected in the
case of other circularlike billiards �12�.

Optimal rational approximants of 	=arcos�a� /� for a
fixed q are obtained by truncating the continued fraction rep-
resentation 	= 1

�1+�1/��2+¯�� = ��1 ,�2 , . . . �, leading to the con-

vergent �� /q�. The irrational numbers 	* for which there
exists one integer �max such that �i��max, for all i, are
called numbers of constant type. Numbers of constant type
are difficult to approximate by rational numbers and there
exist constants C1 ,C2 such that �17�

C1

q2 � 
��

q�
− 	*
 �

C2

q2 , �5�

for all convergents �� /q�. Comparing inequalities �4� and �5�
we note the same q−2 dependence. Since the convergents are
the best approximants, the lower bound in Eq. �5� is valid for
all rational numbers. Therefore, provided that 	 is a number
of constant type, there are regions of the control parameters
�a� / �2	1−r2��C1 for annular billiards� for which there ex-
ist only a finite number of families of MUPOs. The numbers
of constant type are uncountable and dense in the set of real
numbers. They have zero Lebesgue measure, however,
meaning that with full probability 	 belongs to the comple-
mentary set of irrational numbers for which C2→0 in Eq.
�5�. Therefore, an infinite number of MUPOs exist for almost
all 	 and hence for almost all parameters �r ,��.

The demonstration above can be used in circularlike bil-
liards with arbitrary inner scatterers �12� to verify whether
the convergents �� /q� of 	=arcos�a� /� are MUPOs �q� ,���
�e.g., satisfy condition �2� in the case of annular billiards or
Eq. �6� of Ref. �14� in the case of mushrooms�. Typically, an
infinite number of different families �q ,�� can be found
among the convergents. For the annular billiard illustrated in
Fig. 2, for instance, all odd convergents tested are MUPOs:
�5,1� , �11,2� , �436,77� , �1342,237� , . . ., while the MUPO
�4,1� is not a convergent.

IV. EXPERIMENTAL RESULTS

Having shown that MUPOs are abundant, we now study
the impact of these structures in quantum experiments. We
use the equivalence between Schrödinger’s and Helmholtz’s
equations for flat microwave cavities �5,6� to investigate the
effect of MUPOs in quantum annular billiards. We show that
MUPOs are detectable and play a prominent role among the
periodic orbits.

A microwave cavity with radius 12.5 cm, height of 5 mm,
and four coupling antennas was used in the experiments. The
inner scatterer had a radius of 1.5 cm, leading to r=0.12. The
resonance spectra have been obtained using a vectorial net-
work analyzer, measuring the complex amplitude ratio of the
input and output microwave signal of the cavity. For each
value of �=0,0.08, . . . ,0.88 we measured 10 spectra up to
10 GHz with a resolution of 100 KHz. Different antennas
and antenna combinations were used to find as many reso-
nances as possible. Close lying levels �e.g., split doublets�
were detected as one resonance only due to their finite width.
However, since the position of those doublets can be ap-
proximately calculated, a second �not detected� eigenvalue
could be attributed to the corresponding frequencies. We jus-
tify this procedure by using the high precision data obtained
with superconducting cavities in the experiments described
in Ref. �18�: there the doublets could be resolved, and we
found that the length spectrum is stable under small random
shifts of one doublet partner, which allows us to assume
doublets to be degenerate. Finally, by comparing the number
of detected levels N�f� below the frequency f to the expected

ωouter ωmixed
ωinner

(a) Outer MUPOs (b) Mixed inner-outer MUPOs (c) Inner MUPOs

FIG. 3. �Color online� Size w of the families of MUPOs �5,2� in
the annular billiard with r=0.12: �a� outer MUPOs for �=0.2, �b�
mixed inner-outer MUPO for �=0.5, and �c� inner MUPOs for �
=0.8. All three kinds of MUPOs may coexist for a fixed �. The size
w of the families of MUPOs in Eq. �3� is given by the length of the
external arcs. MUPOs �5,2� outside of these regions do not exist
since they collide with the inner scatterer.
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number NWeyl given by Weyl’s formula �3�, we checked that
almost all eigenvalues in the considered part of the spectrum
have been found �N�150 for each ��.

Performing a Fourier transform �FT� of the level density

��f�=
dN�f�

df we have computed the length spectrum

��̃fluc�x�� = �FT���k� − �Weyl�k�� , �6�

where k=2�f /c. The classical periodic orbits manifest them-
selves as peaks located at the corresponding orbit length. The
length of periodic orbit �q ,�� is given by x�q,��
=2Rq sin��� /q�. Particularly, for all �’s we consider the
peak heights y �strengths� of the diameter �x�2,1�=0.5 m�, tri-
angular �x�3,1�=0.63 m�, and square �x�4,1�=0.71 m� orbits.
The length spectrum for �=0.48 is shown in Fig. 4, where
we indicate additionally the peak at x=0.34 m related to an
unstable periodic orbit. Notice that this peak is much smaller
than the peaks associated with the MUPOs.

Using periodic orbit theory, the strength of an orbit in a
quantum mechanical length spectrum is given by the ampli-
tudes of the oscillatory terms in a semiclassical periodic orbit
summation. We use the trace formula for integrable systems

to obtain the orbit dependent amplitudes A=�
sin3/2���/q�

	q
,

where �=1 for the diameter orbit, and �=2 for all other
orbits �3�. The expected strength in the case of the MUPOs is

Ssc�q,�� = wA , �7�

where w is the measure of the entire family, given in Eq. �3�
and illustrated in Fig. 3. In Fig. 5 we compare Ssc �lines� with
the experimental strengths y �symbols, rescaled by a com-
mon factor� for different values of �. The dependence of Ssc
on � is due to the factor w. Overall, the orbits strengths y
approximately follow the semiclassical behavior Ssc for �
�0.3. The deviations can be understood qualitatively as the
experiment diverges from the semiclassical limit: �1� the fi-
nite wavelengths imply a spatial uncertainty of the order of
the typical width of the peaks in the length spectrum, �2� the
Fourier transform of a finite spectral range generates fluctua-
tions in the length spectra �of the order of 10% of the

diameter peak height, as seen for x�0.2 m in Fig. 4�. Nev-
ertheless we find that quantum behavior resembles the clas-
sical behavior in the sense that the data support the use of the
weighting factors w in the semiclassical strengths in Eq. �7�.

V. CONCLUSIONS

We have demonstrated that MUPOs are prevalent and that
they must be accounted for in billiard experiments, which is
a new paradigm that advances previous conclusions drawn
for specific systems �6,8,13�. In particular, MUPOs have not
been previously observed in annular billiards, despite many
theoretical �10,21,22� and experimental �18� studies, includ-
ing detailed catalogs of periodic orbits �23�. We have shown
that annular and general circularlike billiards typically have
an infinite number of different families of MUPOs in the
chaotic component close to the border of the whispering gal-
lery. This should be contrasted with the case of billiards with
parallel walls such as stadium and Sinai billiards, where only
a finite number of families of MUPOs exists.

The abovementioned results can be immediately extended
to other chaotic billiards defined by local perturbations of
integrable systems and are expected to find applications in
both classical and quantum studies. Classically, general argu-
ments on marginal instability can be used to show that the
resulting stickiness of chaotic trajectories to MUPOs gener-
ates a universal power law p�t�� t−2 for the survival prob-
ability of nearby particles �14�. This scaling is expected to
hold for long times, while fluctuations �nonperiodic echoes�
occur for short times �13,19�. Studies in the quantum regime
have shown that orbits with marginal stability are robust to
small perturbations �20� and give rise to different transport
phenomena �9�. Recent theoretical studies and microwave
experiments on chaos assisted tunneling in the annular bil-
liard have demonstrated a pronounced effect on the tunneling
of the so called “beach region” between the whispering gal-
lery and the chaotic region �18,21�. Different mechanisms of

FIG. 4. Experimental length spectrum of the annular billiard for
�=0.48. Peaks associated with four periodic orbits are indicated:
the shortest one is unstable, the diameter and triangle are MUPOs,
and the square is inside the regular region.
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FIG. 5. �Color online� Semiclassical strengths Ssc �lines� com-
pared to the experimental strengths y �symbols�. Ssc is given by Eq.
�7� and expected from periodic orbit theory, while y is extracted
from the length spectra, as shown in Fig. 4. Three orbits are con-
sidered: diameter �dotted line and circles�, triangle �solid line and
triangles�, and square �dot-dashed line and squares�. The horizontal
lines �top� indicate the values of � for which the corresponding
MUPOs exist.
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dynamical tunneling are currently under investigation �24�,
and special attention is being devoted to mushroom billiards
�25,26�. Our results have fully characterized the dynamics in
the “beach region” of annular and mushroom billiards in
terms of marginal unstable orbits. The formalization of their
contribution to dynamical tunneling and a comparison with
the existing numerical and experimental results are interest-
ing open questions.
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